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Chapter 1

Introduction

Let Xd denote a simply connected space of constant sectional curvature, i.e. either spherical space
Sd, or Euclidean space Ed, or hyperbolic space Hd. A convex finite volume polyhedron P ⊂ Xd is
called a Coxeter polyhedron if its dihedral angles are all integer submultiples of π. One can proof
that the group Γ(P ) < Isom(Xd) generated by reflections in facets of P is discrete. It turns out
that this fact holds only for Coxeter polyhedra. Thus, the study of reflective (cocompact) lattices
in Isom(Xd) is no different from the study of (compact) Coxeter polyhedra in Xd.

Compact Coxeter polytopes in Sd and Ed were classified by Coxeter in [Cox34]. Vinberg
initiated the study of such polytopes in Hd and proved in [Vin84] that there are no compact
Coxeter polytopes in H!30. Examples are known only in H"8, a single example is known in H8

and two in H7 ([Bug92, Bug84, All13]). Finite volume polyhedra of this type do not exist in H!996

(see [Kho86, Pro86]). Examples are known only in H"19 and H21 (see [Vin72, KV78, Bor87])
In the course of our research, we found that compact hyperbolic Coxeter polytopes have certain
restrictions (Theorem 1.1). These restrictions imply the classification of compact polytopes that
combinatorially equivalent to products of simplices (Theorem 1.2). We also succeed to improve
the Vinberg upper bound on the dimensions for a certain type of polytopes (Theorem 1.3).

A special case of Coxeter polyhedra are right-angled polyhedra, i.e. convex polyhedra with all
dihedral angles being equal to π/2. It is possible to improve the upper bound on the dimensions
of such polyhedra (see Theorems 1.4, 1.5, and 1.6). We propose an improvement of the Nikulin
inequality, which is widely used in proving the absence of Coxeter polyhedra. This allows us to
give much shorter proofs for the second and third theorems. During the search of the further
improvements on the dimension we managed to improve Nonaka’s lower bound on the number of
ideal vertices (see Theorem 1.8).

Finally, in our joint work with N. Bogachev, A. Vesnin, and A. Egorov, we consider 3-dimen-
sional right-angled polyhedra. Recently, Champanerkar, Kofman, and Purcell conjectured that a
knot complement does not admit a decomposition into ideal hyperbolic right-angled polyhedra (see
[CKP22]). They verified the conjecture for all knots up to 11 crossings by comparing their volumes
with the smallest volumes of ideal right-angled polyhedra. We studied the volumes of polyhedra
and improved Atkinson’s lower volume bound (Theorems 1.9, 1.10, and 1.11).

1.1 Compact hyperbolic Coxeter polytopes

There are two very hard long-standing open problems in the theory of compact hyperbolic Coxeter
polytopes. The first one is the construction of new hyperbolic Coxeter polytopes, especially higher-
dimensional ones. And the second one is the classification of such polytopes.

Generally speaking, there are two different approaches to both problems: classification of finite
volume Coxeter polytopes of some certain combinatorial types (see [Kap74, Ess96, Tum07, FT08,
FT09, JT18, Bur22, MZ22a, MZ22b]) and the theory of arithmetic hyperbolic reflection groups (see
[Vin72, Bel16, Bog17, BP18, Bog19, Bog20]). In particular, in the context of arithmetic and quasi-
arithmetic reflection groups several authors constructed new Coxeter polytopes as faces or reflection
centralizers of some higher dimensional polytopes (see [Bor87, All06, All13, BK21, BBKS21]).
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Our work was focused on the combinatorial approach, so let us give a brief summary of the
results on the classification of compact hyperbolic Coxeter polytopes of certain combinatorial
properties. The complete classification of Coxeter polytopes in H2 was obtained by Poincaré
([Poi82]). Andreev ([And70a, And70b]) described all Coxeter polytopes in H3. Compact Coxeter
simplices were classified by Lannér ([Lan50]). Kaplinskaya ([Kap74]) used this classification to
list all compact simplicial prisms. Esselmann ([Ess96]) used Gale diagrams to list the remaining
compact polytopes in Hd with d+2 facets. Tumarkin ([Tum07]) improved this technique and listed
all compact polytopes in Hd with d+3 facets. All cubes were classified by Jacquemet and Tschantz
([JT18]). Very recently and independently, Burcroff ([Bur22]) and Ma & Zheng ([MZ22a, MZ22b])
listed all compact Coxeter polytopes in Hd with d+ 4 facets for d = 4, 5.

1.1.1 Classification of compact Coxeter products of simplices

First of all, we should provide some definitions. Each Coxeter polytope can be described by its
Coxeter diagram. Such a diagram contains information about the dihedral angles and distances
between every pair of facets. Another way to describe a Coxeter polytope is its Gram matrix, i.e.
the matrix of inner products of the outward normal vectors to the facets. Since such vectors are in
Minkowski space, the negative inertia index of the Gram matrix of a hyperbolic Coxeter polytope
is equal to one. Both descriptions are equivalent: one can obtain the Gram matrix of a Coxeter
polytope using its Coxeter diagram, and vice versa. It is known that the Coxeter diagram of a
compact Coxeter polytope does not contain a parabolic subdiagram, i.e. a diagram whose Gram
matrix is positive semi-definite and singular.

Coxeter diagrams of the compact simplices in hyperbolic spaces were listed by Lannér ([Lan50])
and are now called Lannér diagrams. They have an important property. Consider a compact hy-
perbolic Coxeter polytope and a minimal set of its facets with empty intersection. The subdiagram
that corresponds to the set is a Lannér diagram.

The Lannér diagrams play an important role in many classifications as such diagrams are
“unfriendly” to each other. These diagrams often form so-called superhyperbolic diagrams, i.e.
the diagrams whose negative inertia index of the corresponding Gram matrix is at least two. Such
diagrams are not contained in any diagram that corresponds to a hyperbolic Coxeter polytope.
Our first theorem provides a result of this type.

Denote by Lk1 ×0 · · · ×0 Lkn the set of all Coxeter diagrams generated by pairwise disjoint
Lannér diagrams of orders k1, . . . , kn and not containing parabolic or other Lannér subdiagrams.
The Gram matrices of such diagrams can be characterised as follows. They are symmetric. The
diagonal consists of blocks that are the Gram matrices of Lannér diagrams of orders k1, . . . , kn.
Each of the other values is either equal to − cos

!
π
k

"
, or a real not exceeding −1. The Gram matrix

does not have the Gram matrix of a Lannér or parabolic diagram as its principal submatrix, except
for those that are on the diagonal.

Let us introduce the notation for some families of compact hyperbolic Coxeter polytopes:

• Simp∗ for all products of simplices;

• Simpk for all products of k simplices;

• Cubes for all cubes (not necessarily 3-dimensional).

Theorem 1.1 ([Ale22, Theorem A]). Let n ! 4 and 2 ∕= k1 ! · · · ! kn = 2. Every diagram
contained in the set Lk1 ×0 · · ·×0 Lkn is superhyperbolic.

As a simple corollary of this theorem, we obtain the following.

Theorem 1.2 ([Ale22, Theorem B]). Simp∗ = Simp1 ∪ Simp2 ∪ Simp3 ∪ Cubes.

Recall that 2-dimensional hyperbolic polytopes were studied by Poincaré in [Poi82]. Acute-
angled 3-dimensional hyperbolic polytopes have a good combinatorial description by Andreev
([And70a, And70b]). Higher-dimensional polytopes are listed by:

• Simp1: Lannér ([Lan50]);
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• Simp2: Kaplinskaya ([Kap74]) and Esselmann ([Ess96]);

• Simp3: Tumarkin ([Tum07]);

• Cubes: Jacquemet and Tschantz ([JT18]).

Thus, the theorem provides the complete classification of the compact hyperbolic Coxeter polytopes
that are combinatorially equivalent to products of simplices.

1.1.2 Compact 3-free Coxeter polytopes

Now let us consider the polytopes with diagram containing no Lannér subdiagrams of order ! 3.
These are exactly the polytopes with the following property: every set of facets with an empty
intersection contains a pair of disjoint facets. Such polytopes are called 3-free polytopes. For
example, cubes satisfy this property, so the Coxeter diagram of a cube does not contain a Lannér
subdiagram of order ! 3. Another example that satisfies this property is the family of compact
right-angled polytopes in hyperbolic spaces (the reason is the structure of their diagrams). It is
known that there are no Coxeter cubes in H!6 ([JT18]) and that there are no compact right-angled
polytopes in H!5 ([PV05]). Recently Burcroff in [Bur22] used Vinberg’s methods to estimate the
dimension of such polytopes. We slightly improved this estimation.

Theorem 1.3 ([Ale22, Theorem C]). Every Coxeter diagram of a compact Coxeter polytope in
H!13 contains a Lannér diagram of order ! 3.

1.2 Hyperbolic right-angled polyhedra

Unlike in spherical or Euclidean spaces, the combinatorics of right-angled polytopes in hyperbolic
space is more complex. For example, one may start with a regular right-angled dodecahedron in
H3. Then one can glue two such dodecahedra together by identifying a pair of mutually isometric
pentagonal faces and obtain a new right-angled polytope. This procedure can be performed induc-
tively to obtain a garland of dodecahedra. In the Euclidean case, the only right-angled polytope
is a parallelogram, and any such garland would be just a parallelogram again.

1.2.1 Dimension bounds for right-angled hyperbolic polyhedra

Since right-angled polyhedra are also Coxeter polyhedra, the Vinberg–Khovanskii–Prokhorov di-
mension upper bounds also holds for them. However, these bounds can be significantly improved
as follows.

Theorem 1.4 ([PV05]). There are no compact right-angled polyhedra in H!5.

Our next result is a new short proof of the following two theorems.

Theorem 1.5 ([Kol12]). There are no ideal right-angled polyhedra in H!7.

Theorem 1.6 ([PV05, Duf10]). There are no finite volume right-angled polyhedra in H!13.

The bound stated in Theorem 1.4 is exact. The exactness of the other bounds is unknown:
examples of ideal right-angled polyhedra are only known up to dimension 4 and examples of finite
volume right-angled polyhedra are only known up to dimension 8.

Nikulin’s inequality ([Nik81, Theorem 3.2.1]) states that low-dimensional faces of a simple
Euclidean polytope cannot have too many faces on average. Khovanskii proved that Nikulin’s
inequality holds for polytopes that are simple at edges ([Kho86, Theorem 10]). We prove that
Nikulin’s inequality not only holds for polytopes that are simple at edges but can also sometimes be
improved. Section 3.3 deals with the inequality for 7-dimensional ideal finite volume right-angled
hyperbolic polyhedra and Section 3.4 deals with the inequality for 13-dimensional right-angled
hyperbolic polyhedra. Our proofs are based on the fact that every ideal vertex is contained in
many facets. We believe that a more general case can be proved.
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1.2.2 Number of ideal vertices of right-angled hyperbolic polyhedra

Lower bounds on the number of ideal vertices and facets of right-angled polyhedra are essential
to prove the absence of such polyhedra in higher dimensions. Let Pn denote the family of finite
volume non-compact right-angled hyperbolic polyhedra, ak(P ) and v∞(P ) denote the number of k-
faces and the number of ideal vertices of a polyhedron P respectively. In [Non15] Nonaka obtained
some estimates on the number of ideal vertices of a right-angled hyperbolic polyhedron.

Theorem 1.7 ([Non15, Main Theorem 1.2]). Let Pn ∈ Pn. Then v∞(Pn) ! vn∞, where vn∞ is
defined by the following table.

n 5 6 7 8 9 10 11 12

vn∞ − 3 17 36 91 254 741 2200

We managed to improve Nonaka’s estimates as follows.

Theorem 1.8 ([Ale23, Theorem 1.5]). Let Pn ∈ Pn. Then v∞(Pn) ! vn∞, where vn∞ is defined
by the following table.

n 5 6 7 8 9 10 11 12

vn∞ 2 6 23 135 1704 182 044 1.67 · 109 1.27 · 1017

The proof of the theorem and more precise bounds are given in Section 3.5.

1.3 Volumes of right-angled 3-polyhedra

Studying volumes of hyperbolic polyhedra and hyperbolic manifolds is a fundamental problem in
geometry and topology. Recently, the study of the volumes of ideal right-angled polyhedra has
become more attractive and important in view of the theorem on maximal volume of a generalized
hyperbolic polyhedra with given 1-skeleton [Bel21], the problem on minimal ideal right-angled
4-dimensional hyperbolic polyhedron [Kol12], and the conjecture about hyperbolic right-angled
knots [CKP22].

An initial list of ideal right-angled polyhedra is given in [EV20a], and of compact ones in [Ino22].
A detailed discussion of constructions of hyperbolic 3-manifolds from right-angled polyhedra can
be found in the recent survey [Ves17]. In the compact case, there such manifolds are related
to small covers, see e.g. [DJ91, BP16]. Also, right-angled polytopes are useful for constructing
hyperbolic 3-manifolds that bound geometrically [KMT15]. Let us also mention several works
on the interplay between the arithmeticity of hyperbolic reflection groups and arithmeticity of
hyperbolic links [Kel22, MMT20]. Here it turns out to be very useful that fundamental groups
of some hyperbolic link complements are commensurable with hyperbolic reflection groups since
Vinberg’s theory of reflection groups [Vin85] can be applied.

In 1970, Andreev [And70a, And70b] (see also [RHD07]) obtained his famous characterization
of hyperbolic acute-angled (all dihedral angles are at most π/2) 3-polyhedra of finite volume.
For right-angled (all dihedral angles equal π/2) polyhedra, Andreev’s theorems provide simple
necessary and sufficient conditions for realizing a given combinatorial type as a compact, ideal,
or finite volume polyhedron in H3. Such realizations are determined uniquely up to isometry
of H3. Thus one can expect that geometric invariants of these polyhedra can be estimated via
combinatorics. Lower and upper bounds for volumes of right-angled hyperbolic polytopes using
the number of vertices were obtained by Atkinson [Atk09].

Recall that volumes of hyperbolic 3-polyhedra can usually be expressed via the Lobachevsky
function (see [Vin93b])

Λ(x) = −
# x

0

log |2 sin t|dt.

In order to formulate the main results more conveniently, we define two constants depending only
on Lobachevsky function’s values at certain points. The first one, v8 = 8Λ(π/4), equals the volume
of the regular ideal hyperbolic octahedron. Up to six decimal places v8 ≈ 3.663862. The second
one, v3 = 3Λ(π/3), equals the volume of the regular ideal hyperbolic tetrahedron. Up to six
decimal places v3 ≈ 1.014941.
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1.3.1 Ideal right-angled hyperbolic 3-polyhedra

Recall that if P ⊂ H3 is an ideal right-angled polyhedron with V vertices, then V ! 6. Moreover,
V = 6 if and only if P is an octahedron, which can be described as the antiprism A(3) with
triangular bases. Thus, Vol(A(3)) = v8.

The volume formula for antiprisms A(n) (i.e. ideal right-angled polytopes with V = 2n vertices,
two n-gonal bases and 2n lateral triangles), n ! 3, was obtained by Thurston [Thu80, Chapter 6
& 7]:

Vol(A(n)) = 2n
$
Λ
%π
4
+

π

2n

&
+ Λ

%π
4
− π

2n

&'
.

For example, up to six decimal places, Vol(A(4)) = 6.023046.

In 2009, Atkinson obtained [Atk09, Theorem 2.2] the following upper and lower bounds for
volumes via the number of vertices. Let P be an ideal right-angled hyperbolic 3-polytope with
V ! 6 vertices, then

v8
4

· V − v8
2

" Vol(P ) " v8
2

· V − 2v8.

It is worth mentioning that both inequalities are sharp when P is a regular ideal octahedron
(i.e. for V = 6). Moreover, the upper bound is asymptotically sharp in the following sense: there
exists a sequence of ideal right-angled polytopes Pi with Vi vertices such that Vol(Pi)/Vi → v8

2 as
i → +∞.

There are no ideal right-angled polytopes with V = 7, and V = 8 if and only if P is the
antiprism A(4) with quadrilateral bases. The following upper bound was obtained in [EV20c,
Theorem 2.2]. Let P be an ideal right-angled hyperbolic 3-polyhedron with V ! 9 vertices. Then

Vol(P ) " v8
2

· V − 5v8
2

.

The inequality is sharp when P is the double of a regular ideal octahedron along a face (i.e. for
V = 9). The graphs of the above lower and upper bounds in comparison to the volumes of ideal
right-angled polyhedra up to 21 vertices can be found in [EV20c, Fig. 1].

Theorem 1.9 ([ABVE23, Theorem 1.1]). Let P be an ideal right-angled hyperbolic 3-polyhedron
with V vertices. Then the following inequalities hold.

(1) If V > 24, then

Vol(P ) " v8
2

· V − 3v8.

(2) If P has a k-gonal face, k ! 3, then

Vol(P ) " v8
2

· V − k + 5

4
v8.

(3) If P has only triangular and quadrilateral faces with V ! 73, then

Vol(P ) " v8
2

· V − (9v8 − 20v3) .

The proof of Theorem 1.9 is given in Section 3.6.

1.3.2 Compact right-angled hyperbolic 3-polytopes

It is well-known that for a compact right-angled polytope in H3 with V vertices we have either
V = 20 or V ! 24 and even. Moreover, V = 20 if and only if P is a regular right-angled dodeca-
hedron.

The volume formula is known for an infinite series of compact right-angled Löbell polytopes
L(n), n ! 5, with V = 4n, two n-gonal bases and 2n lateral pentagonal faces. In particular, L(5)
is a regular dodecahedron. By [Ves98], for n ! 5, the volume of L(n) is

Vol(L(n)) =
n

2

$
2Λ(θ) + Λ

%
θ +

π

n

&
+ Λ

%
θ − π

n

&
− Λ

%
2θ − π

2

&'
,
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where θ = π
2 − arccos

%
1

2 cos(π/n)

&
.

Two-sided bounds for volumes of compact right-angled hyperbolic 3-polytopes were obtained
by Atkinson [Atk09, Theorem 2.3]. Namely, if P is a compact right-angled hyperbolic 3-polytope
with V vertices, then

v8
32

· V − v8
4

" Vol(P ) <
5v3
8

· V − 25

4
v3.

Moreover, there exists a sequence of compact right-angled polytopes Pi with Vi vertices such that

Vol(Pi)/Vi → 5v3
8 as i → +∞.

The upper bound can be improved if we exclude the case of the dodecahedron. Indeed,
by [EV20c, Theorem 2.4], if P is a compact right-angled hyperbolic 3-polytope with V ! 24
vertices, then

Vol(P ) " 5v3
8

· V − 35

4
v3.

Theorem 1.10 ([ABVE23, Theorem 1.2]). Let P be a compact right-angled hyperbolic polytope
with V vertices. Then the following inequalities hold.

(1) If V > 80, then

Vol(P ) " 5v3
8

· V − 10v3.

(2) If P has a k-gonal face, k ! 5, then

Vol(P ) " 5v3
8

· V − 5k + 35

8
v3.

The proof of Theorem 1.10 is given in Section 3.7.

1.3.3 Finite volume right-angled hyperbolic 3-polyhedra

As well as in the ideal and compact cases, Atkinson obtained (see [Atk09, Theorem 2.4]) volume
bounds for right-angled hyperbolic polyhedra having both finite and ideal vertices. If P is a finite
volume right-angled hyperbolic polyhedron with V∞ > 0 ideal vertices and VF finite vertices, then

v8
4

· V∞ +
v8
32

· VF − v8
4

" Vol(P ) <
v8
2

· V∞ +
5v3
8

· VF − v8
2
. (1.1)

Provided more combinatorial information about P , we are able to improve the upper bound as
follows.

Theorem 1.11 ([ABVE23, Theorem 1.3]). Let P be a finite volume right-angled hyperbolic 3-
polyhedron with V∞ > 0 ideal vertices and VF finite vertices. If V∞ + VF > 17, then

Vol(P ) <
v8
2

· V∞ +
5v3
8

· VF −
(
v8 +

5v3
2

)
.

The proof of Theorem 1.11 is given in Section 3.8.
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Chapter 2

Preliminaries

2.1 Abstract diagrams

A diagram is a graph with positive real weights on the edges. The order |S| of a diagram S is
the number of vertices of the graph. A subdiagram of a diagram S is a diagram obtained from S
by erasing some vertices together with all edges incident to these vertices. Consider a diagram S.
A diagram generated by subdiagrams S1, . . . , Sk of S and vertices v1, . . . , vl of S is a subdiagram
〈S1, . . . , Sk, v1, . . . , vl〉 of S obtained from S by erasing every vertex v that is not contained in any
Si and is not equal to any vj .

Let S be a diagram. Consider a symmetric matrix (gij) such that gij equals one if i = j, zero if
vivj is not an edge of the diagram S, and −wij if wij is the weight of the edge vivj . Such a matrix
G(S) = (gij) is called the Gram matrix of the diagram S.

We say that a diagram has some property if its Gram matrix has the same property (e.g.,
positive definiteness). A diagram has the same determinant and signature as its Gram matrix.

A diagram is said to be elliptic if it is positive definite, parabolic if it is positive semidefinite
and not elliptic, and hyperbolic if it is indefinite with the negative inertia index equals one.

A product of diagrams S1 and S2 is a diagram whose vertex set is the disjoint union of the
vertex sets of S1 and S2 and whose edge set is the union of the edge sets of S1 and S2 (informally
speaking, we draw two diagrams side by side). The Gram matrix of such diagram is equal to
G(S1)⊕G(S2) up to simultaneous permutation of rows and columns. A diagram is connected if it
is not a product of some other non-empty diagrams.

Obviously, every elliptic diagram is a product of some connected elliptic diagrams. Every
parabolic diagram is a product of some connected elliptic diagrams and some (at least one) con-
nected parabolic diagrams.

Proposition 2.1. A hyperbolic diagram does not contain a subdiagram that is a product of two
hyperbolic diagrams.

2.2 Coxeter diagrams

A diagram is called a Coxeter diagram if each of its weights is either ! 1 or equal to cos
!
π
m

"
for

some integer m ! 3. Such diagrams are usually drawn as follows. If the weight of an edge vivj is
greater than one, then a dashed edge is drawn connecting vi and vj . If the weight of an edge vivj
is equal to one, then a bold edge is drawn. If the weight of an edge vivj is equal to cos( π

m ), then
a (m− 2)-fold edge or a simple edge with label m is drawn. We say that a vertex v is joined with
a vertex u if they are joined by any edge other than a 2-labeled one.

Theorem 2.2 ([Cox34]). Connected elliptic and parabolic diagrams are listed in Table 2.1 and
Table 2.2, respectively.

Corollary 2.3. Every elliptic diagram contains no cycle. Every vertex of an elliptic diagram is
joined with at most three other vertices.
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An(n � 1) Bn = Cn(n � 2)

Dn(n � 4) G
(m)
2

m

F4 E6

E7 E8

H3 H4

Table 2.1: Connected elliptic Coxeter diagrams

eA1
eAn(n � 2)

eBn(n � 3) eCn(n � 2)

eDn(n � 4) eG2

eF4
eE6

eE7
eE8

Table 2.2: Connected parabolic Coxeter diagrams

Corollary 2.4. Let us decrease the multiplicities of some edges of an elliptic diagram. The obtained
diagram is elliptic.

Corollary 2.5. Let us decrease the multiplicities of some edges of a parabolic diagram. The
obtained diagram is either parabolic or elliptic.

A hyperbolic Coxeter diagram S is called a Lannér diagram if any proper subdiagram of S is
elliptic. All Lannér diagrams were classified by Lannér in [Lan50]. They are listed in Table 2.3.
These diagrams correspond (in the sense defined further) to compact hyperbolic Coxeter simplices.
Nevertheless, the importance of such diagrams can already be appreciated.

Proposition 2.6. Every hyperbolic diagram contains either a parabolic or a Lannér subdiagram.

2.3 Hyperbolic polytopes

The Minkowski space Rn,1 is the real vector space

Rn+1 = {(x0, x1, . . . , xn) | xi ∈ R, i = 0, . . . , n}

equipped with the indefinite scalar product

〈x, y〉 = −x0y0 + x1y1 + · · ·+ xnyn.

Consider the two–sheeted hyperboloid

H = {x ∈ Rn,1 | 〈x, x〉 = −1}.

The hyperbolic space is its upper half–sheet

Hn = {x ∈ Rn,1 | 〈x, x〉 = −1, x0 > 0}

with the induced metric. Even though the Minkowski scalar product is indefinite, it induces a
Riemannian metric on the hyperbolic space Hn. This metric turns out to have constant sectional
curvature −1.

10



Order Diagrams

2 ⇢ ⇢ > 1

3
k

m

l

⇣
2  k, l,m < 1,

1
k + 1

l + 1
m < 1

⌘

4

5

Table 2.3: Lannér diagrams

The central projection of Hn onto the plane x0 = 1 through the origin produces an open ball.
Its boundary is called the ideal boundary ∂Hn of the hyperbolic space Hn. The points of ∂Hn

correspond to the isotropic vectors

{x ∈ Rn,1 | 〈x, x〉 = 0, x0 > 0} / R>0 .

The union Hn = Hn ∪ ∂Hn is called the compactification of Hn.
Any vector e ∈ Rn,1 with 〈e, e〉 = 1 defines the associated hyperbolic hyperplane

He = Hn ∩ {x | 〈e, x〉 = 0}

and the respective closed hyperbolic half–space

H−
e = Hn ∩ {x | 〈e, x〉 " 0}.

By He we denote the closure of He in Hn. If 〈e1, e1〉 = 〈e2, e2〉 = 1 and 〈e1, e2〉 " 0 then the
following holds:

(1) if 〈e1, e2〉 > −1, then the hyperplanes He1 and He2 intersect and the angle φ = ∠(H−
e1 , H

−
e2)

can be found from the equation cosφ = −〈e1, e2〉;

(2) if 〈e1, e2〉 = −1, then the hyperplanes He1 and He2 do not intersect while their closures He1

and He2 share a unique point on the boundary ∂Hn;

(3) if 〈e1, e2〉 < −1, then the closures He1 and He2 do not intersect, and the distance ρ between
He1 and He2 measured along their unique common perpendicular can be found from the
equation cosh ρ = −〈e1, e2〉.

A convex hyperbolic n–dimensional polyhedron P is the intersection of finitely many closed
half–spaces of Hn. We also assume that the interior of P is non–empty. In the Klein model of
the hyperbolic space Hn the closure P ⊂ Hn of a convex hyperbolic polyhedron P ⊂ Hn is the
intersection of a convex Euclidean polytope with the unit ball centred at the origin (see [Vin93a]).
So, we apply basically the usual Euclidean terms (e.g., faces and vertices) to hyperbolic polyhedra.

We say that a vertex v of P ⊂ Hn is a finite vertex if v ∈ Hn and an ideal vertex if v ∈ ∂Hn.
A hyperbolic polyhedron has a finite volume if and only if it coincides with the convex hull of its
vertices. A finite volume hyperbolic polyhedron is compact if and only if all of its vertices are finite.
In this case, the polyhedron is also called a polytope. If a finite volume hyperbolic polyhedron P
has only ideal vertices, then P is called ideal.

11



2.4 Hyperbolic Coxeter polytopes

Let P ⊂ Hd be a Coxeter polytope with facets f1, . . . , fn. The Coxeter diagram S(P ) of the
polytope P is a Coxeter diagram with vertices v1, . . . , vn. If the facets fi and fj intersect, then
the weight of the edge vivj is equal to the cosine of the dihedral angle between the facets. If the
facets fi and fj are parallel, then the weight of the edge vivj is equal to one. If the facets fi and fj
diverge, then the weight of the edge vivj is equal to the hyperbolic cosine of the distance between
fi and fj .

Now let us list the essential results on combinatorics of compact hyperbolic Coxeter polytopes.
Let P be a polytope. By F(P ) we denote the partially ordered set of its faces. Let S be a Coxeter
diagram. By F(S) we denote the dual (i.e., anti-isomorphic to the original) partially ordered set
of its elliptic subdiagrams.

Proposition 2.7 ([Vin85, Theorem 3.1]). Let P ⊂ Hd be a compact hyperbolic Coxeter polytope.
Partially ordered sets F(S(P )) and F(P ) are isomorphic.

Thus, the combinatorics of a compact polytope can be easily read according to its Coxeter
diagram. A set of facets has a non-empty intersection if and only if the subdiagram generated by
the corresponding vertices is elliptic.

Consider a compact hyperbolic Coxeter polytope. The structure of its Coxeter diagram is
restricted by the propositions below.

Proposition 2.8 ([Vin85, Proposition 3.2]). Let P ⊂ Hd be a compact hyperbolic Coxeter polytope.
The Coxeter diagram S(P ) contains no parabolic subdiagrams.

Proposition 2.9 ([Vin85, Proposition 4.2]). A Coxeter diagram S is a Coxeter diagram of a
compact hyperbolic Coxeter polytope if and only if the diagram is hyperbolic, contains no parabolic
subdiagrams, and there is a polytope P ⊂ Ed such that F(P ) and F(S) are isomorphic.

The following statement is an easy corollary of the propositions above.

Corollary 2.10. A polytope P ⊂ Hd is a compact simplex if and only if S(P ) is a Lannér diagram.

Finally, the best known general estimation on dimension of a compact hyperbolic Coxeter
polytope is the following.

Theorem 2.11 ([Vin84, Theorem 1]). There are no compact Coxeter polytopes in H!30.

2.5 Superhyperbolic diagrams

A Coxeter diagram is said to be superhyperbolic if its negative inertia index is greater than one. A
local determinant of a diagram S on its subdiagram T is

det(S, T ) =
det(S)

det(S \ T ) .

Usually we will mark the vertices of the subdiagram T with ∨∨∨.
We denote by p(γ) the product of the edge weights of a cycle γ. The following proposition is

very useful for computing determinants.

Proposition 2.12 ([Vin84, Proposition 11]). A determinant of a Coxeter diagram S is equal to
the sum of the products

(−1)k · p(γ1) · . . . · p(γk)

over all sets {γ1, . . . , γk} of positive length disjoint cycles.

Proposition 2.13 ([Vin84, Proposition 13]). If a Coxeter diagram S is generated by two disjoint
subdiagrams S1 and S2 joined by a unique edge v1v2 of weight w, then

det(S, 〈v1, v2〉) = det(S1, v1) · det(S2, v2)− w2.

12



Proposition 2.14 ([Vin84, Table 2]).

det

*
∨∨∨

m

l

k
+

= −d(k, l,m),

where

d(k, l,m) =
cos

!
π
k

"2
+ cos

!
π
l

"2
+ 2 cos

!
π
k

"
cos

!
π
l

"
cos

!
π
m

"

sin
!
π
m

"2 − 1.

Now let us use these propositions to test the diagram below for hyperbolicity.

m

l

k
m′

k′ l′

ρ
(2.1)

This diagram contains an elliptic subdiagram of order 4 and a Lannér subdiagram of order 2.
Therefore, its signature is either (4, 1, 1), or (5, 1, 0), or (4, 2, 0). Hence, the diagram is hyperbolic
if and only if

det

,

- ∨∨∨ ∨∨∨
m

l

k
m′

k′ l′

ρ

.

/ " 0. (2.2)

But

det

,

- ∨∨∨ ∨∨∨
m

l

k
m′

k′ l′

ρ

.

/ = det

*
∨∨∨

m

l

k
+

· det

,

- ∨∨∨
k′ l′

ρ

.

/− cos
% π

m′

&2

=

= d(k, l,m) ·
cos

!
π
l′

"2
+ cos

!
π
k′

"2
+ ρ2 + 2ρ cos

!
π
k′

"
cos

!
π
l′

"
− 1

sin
!
π
l′

"2 − cos
% π

m′

&2

.

If d(k, l,m) ∕= 0, then (2.2) is equivalent to the following:

ρ2 + 2ρ cos
% π

k′

&
cos

%π
l′

&
+ cos

%π
l′

&2

+ cos
% π

k′

&2

− 1−
sin

!
π
l′

"2
cos

!
π
m′

"2

d(k, l,m)
" 0.

Consider the left part of this inequality as a quadratic function in ρ. One of the zeros of this
function is not greater than 1. So there is a ρ > 1 satisfying the inequality if and only if for ρ = 1
the strict inequality holds, i.e.

D(k, l,m, k′, l′,m′) =
%
cos

%π
l′

&
+ cos

% π

k′

&&2

−
sin

!
π
l′

"2
cos

!
π
m′

"2

d(k, l,m)
< 0. (2.3)

This proves the following lemma.

Lemma 2.15. Let m

l

k

be a Lannér diagram. The Coxeter diagram (2.1) is superhyperbolic

for every ρ > 1 if and only if
D(k, l,m, k′, l′,m′) ! 0,

where D(k, l,m, k′, l′,m′) is as in (2.3).

Remark 2.16. Direct calculations show that if d(k, l,m) > 0, then the function D is increasing in
k, l,m, k′, l′, and decreasing in m′.
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2.6 Hyperbolic right-angled polyhedra

The combinatorics of hyperbolic acute-angled polyhedra in H3 was well studied by Andreev (see
[And70a, And70b]). The following theorem is a special case of Andreev’s theorem.

Theorem 2.17. Let P be a combinatorial 3-polytope. There exists a finite volume right-angled
hyperbolic 3-polyhedron P ⊂ H3 that realises P if and only if:

(1) P is neither a tetrahedron, nor a triangular prism;

(2) every vertex of P belongs to at most four faces;

(3) if f , f ′, and f ′′ are faces of P, and e′ = f ∩ f ′, e′′ = f ∩ f ′′ are non-intersecting edges, then
f ′ and f ′′ do not intersect each other;

(4) there are no faces f1, f2, f3, f4 such that ei := fi ∩ fi+1 (indices mod 4) are pairwise non-
intersecting edges of P.

In a right-angled polyhedron P ⊂ H3, a vertex v lies in H3 (i.e. is finite) if and only if it belongs
to exactly three faces of P . If a vertex v is contained in four faces of P , then v ∈ ∂H3.

2.7 Combinatorics of Euclidean polytopes

Let us consider an n-dimensional convex Euclidean polytope P . We say that P is simplicial if
every facet of P is a simplex. We say that P is simple if every vertex of P is the intersection of
exactly n facets. The polar dual of a simplicial polytope is a simple one, and vice versa.

Let fk denote the number of k-dimensional faces of P (here and below we assume that f−1 =
fn = 1). With each n-polytope we associate the n-dimensional vector f = (f0, f1, . . . , fn−1), which
is called the f -vector of the polytope. Euler’s theorem states that

n−10

i=0

fi = 1− (−1)n

and, therefore, that there is a (n − 1)-dimensional (affine) subspace that contains the f -vector
of every n-dimensional polytope. It turns out that for simplicial polytopes there are more linear
restrictions on their f -vectors.

Theorem 2.18 (Dehn–Sommerville equations). For every n-dimensional simplicial convex Eu-
clidean polytope the following equations hold:

n−10

j=k

(−1)j
(
j + 1

k + 1

)
fj = (−1)n−1fk,

where k = −1, 0, . . . , n− 2.

Corollary 2.19. For every 7-dimensional simplicial convex Euclidean polytope the following equal-
ities hold:

f3 = 5f2 − 15f1 + 35f0 − 70,
f4 = 9f2 − 34f1 + 84f0 − 168,
f5 = 7f2 − 28f1 + 70f0 − 140,
f6 = 2f2 − 8f1 + 20f0 − 40.

Corollary 2.20. For every 13-dimensional simplicial convex Euclidean polytope the following
equalities hold:

f6 = 8f5 − 36f4 + 120f3 − 330f2 + 792f1 − 1716f0 + 3432,
f7 = 27f5 − 159f4 + 585f3 − 1683f2 + 4125f1 − 9009f0 + 18018,
f8 = 50f5 − 325f4 + 1252f3 − 3685f2 + 9130f1 − 20 020f0 + 40 040,
f9 = 55f5 − 374f4 + 1474f3 − 4389f2 + 10 934f1 − 24 024f0 + 48 048,
f10 = 36f5 − 250f4 + 996f3 − 2982f2 + 7448f1 − 16 380f0 + 32 760,
f11 = 13f5 − 91f4 + 364f3 − 1092f2 + 2730f1 − 6006f0 + 12 012,
f12 = 2f5 − 14f4 + 56f3 − 168f2 + 420f1 − 924f0 + 1848.
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2.8 Combinatorics of ideal right-angled hyperbolic 3-poly-
hedra

Let P be an ideal hyperbolic right-angled 3-polyhedron. Let V be the number of vertices, E
the number of edges, and F the number of faces of P . The Euler characteristic of P equals
V − E + F = 2. Every ideal vertex of a finite volume right-angled hyperbolic 3-polyhedron is
contained in exactly four edges which implies 4V = 2E, and hence F = V + 2. Let pk denote the
number of k-gonal faces of P . Then the previous equalities provide

0

k!3

pk = F,
0

k!3

kpk = 4V, and p3 = 8 +
0

k!5

(k − 4)pk.

We say that two vertices of P are adjacent if they are connected by an edge. Two vertices are
quasi-adjacent if they belong to the same face but are not adjacent.

Figure 2.1: Ideal right-angled polyhedra with V = 24 vertices.

Example 2.21. Two ideal right-angled polyhedra with 24 vertices from [EV20a] are shown in Fig-
ure 2.1. Each vertex of those polyhedra belongs to exactly one triangular face and three quadri-
lateral faces. Thus, each vertex of those polyhedra has exactly three quasi-adjacent vertices.

Lemma 2.22. Let P be an ideal right-angled hyperbolic 3-polyhedron with V > 24 vertices. Then
there is a vertex that has at least 4 quasi-adjacent ones.

Proof. Let q(v) be the number of vertices that are quasi-adjacent to v. Then the average number
of quasi-adjacent vertices in P equals

1
v q(v)

V
=

1

V

0

k!3

k(k − 3)pk =
1

V

0

k!3

k2pk − 3

V

0

k!3

kpk =

=
1

V

0

k!3

k2pk − 12 =
1

V

$
32 p3 + 42

%
F − p3 −

0

k!5

pk

&
+

0

k!5

k2pk

'
− 12,

=
1

V

2
32

%
8 +

0

k!5

(k − 4)pk

&
+ 42

%
F − p3 −

0

k!5

pk

&
+

0

k!5

k2pk

3
− 12 =

=
1

V

2
32

%
8 +

0

k!5

(k − 4)pk

&
+ 42

%
V − 6−

0

k!5

(k − 3)pk

&
+

0

k!5

k2pk

3
− 12 =

= 4− 24

V
+

1

V

0

k!5

(k2 − 7k + 12)pk ! 4− 24

V
> 3.

Therefore, there is a vertex in P that has at least 4 quasi-adjacent vertices.

Remark 2.23. Each vertex of a k-gonal face has at least k−3 quasi-adjacent ones. So if a polytope
has a k-gonal face for k ! 7 then it has a vertex with at least 4 quasi-adjacent ones.
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We say that a face f and a vertex v are incident if v belongs to f . A face f and a vertex v are
quasi-incident if they are not incident, but v has an incident face f ′ such that f ′ shares an edge
with f .

Proposition 2.24. Let P be an ideal right-angled hyperbolic 3-polyhedron with V > 72 vertices
and with only triangular and quadrilateral faces. Then there is a vertex without incident and
quasi-incident triangular faces, see Figure 2.2.

Figure 2.2: A vertex without incident and quasi-incident triangular faces.

Proof. Let F denote the number of faces of P . Because there are only triangular and quadrilateral
faces, the set of faces of P consists of 8 triangles and F − 8 quadrilaterals. Every triangular face

Figure 2.3: Incident and quasi-incident vertices of a 3-gonal face.

is incident or quasi-incident to at most 9 vertices (see Figure 2.3). Therefore, at most 72 vertices
of P can be incident or quasi-incident to triangular faces.

2.9 Combinatorics of compact right-angled hyperbolic 3-
polytopes

Let P be a compact right-angled hyperbolic 3-polytope. Let V denote the number of vertices, E the
number of edges, and F the number of faces. The Euler characteristic of P equals V −E+F = 2.
Every vertex of a compact right-angled hyperbolic 3-polytope is incident to three edges, which
implies 3V = 2E and F = 1

2V +2. Let pk denote the number of k-gonal faces of P . By Theorem 2.17
p3 = 0 and p4 = 0, and the previous equalities imply

0

k!5

pk = F,
0

k!5

kpk = 3V, and p5 = 12 +
0

k!7

(k − 6)pk.

An edge e and a vertex v are incident if v is one of the two vertices that e connects. We say
that an edge e and a vertex v are quasi-incident if they are not incident, but at least one vertex
of e belongs to the same face as v.
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Since each vertex of a compact right-angled hyperbolic polyhedron P is trivalent, we have four
faces f1, f2, f3, and f4 arranged around each edge e of P as shown in Figure 2.4. If fi is ki-gonal,
then number of vertices quasi-incident to e is equal to

14
i=1 ki − 10 (note that Andreev’s theorem

implies that f2 ∩ f4 = ∅).

f1

f2

f3

f4

e

Figure 2.4: An edge e and faces around.

Example 2.25. Consider the polyhedron presented in Figure 2.5. It has 80 vertices and it is known

Figure 2.5: Fullerene C80.

as fullerene C80 is the structural chemistry. Each edge of C80 is quasi-incident to 13 vertices.
Indeed, every edge of C80 has one pentagon and three hexagons around itself.

Lemma 2.26. Let P be a compact right-angled hyperbolic polytope with V > 80 vertices. Then
there is an edge with at least 14 quasi-incident vertices.

Proof. Let q(e) be the number of vertices that are quasi-incident to an edge e. Then the average
number of quasi-incident vertices in P equals

1
e q(e)

E
=

1

E

4

5
0

k!5

k(k − 2)pk +
0

k!5

k(k − 3)pk

6

7 =
2

E

0

k!5

k2pk − 5

E

0

k!5

kpk

=
2

E

0

k!5

k2pk − 10 =
2

E

4

552p5 + 62p6 +
0

k!7

k2pk

6

7− 10

=
2

E

4

552
*
12 +

0

k!7

(k − 6)pk

+
+ 62

*
F − p5 −

0

k!7

pk

+
+

0

k!7

k2pk

6

7− 10

=
2

E

4

552
*
12 +

0

k!7

(k − 6)pk

+
+ 62

*
E

3
− 10−

0

k!7

(k − 5)pk

+
+

0

k!7

k2pk

6

7− 10
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= 14− 120

E
+

2

E

0

k!7

(k2 − 11k + 30)pk ! 14− 120

E
= 14− 80

V
> 13.

Therefore, there exists an edge with at least 14 quasi-incident vertices.

Corollary 2.27. Suppose that P is a compact right-angled hyperbolic 3-polytope with V > 80
vertices. Then there is an edge with ki-gonal faces around, i = 1, . . . , 4, such that

14
i=1 ki ! 24.

2.10 Combinatorics of finite volume right-angled hyperbolic
3-polyhedra

Let P be a right-angled hyperbolic 3-polyhedron with VF finite and V∞ ideal vertices. Denote the
number of its edges by E, and the number of its faces by F . The Euler characteristic of P equals

VF + V∞ − E + F = 2.

Since every ideal vertex is incident to four edges and each finite vertex is incident to three edges,
we get 3VF + 4V∞ = 2E. Hence F = 1

2VF + V∞ + 2. We say that two faces are neighbours if they
have a common vertex.

Lemma 2.28. Let P be a finite volume right-angled hyperbolic 3-polyhedron with VF finite and
V∞ ideal vertices.

(1) Suppose VF + V∞ > 15 and V∞ ! 1, or VF + V∞ ! 15 and V∞ > 1. Then there is a face
f ∈ P with at least 6 neighbours.

(2) Let VF + V∞ > 17 and V∞ ! 3. If there is no face with ! 7 neighbours, then there are at
least 7 faces such that each of them has 6 neighbours.

(3) If V∞ ! 6 and there is a face f ∈ P with at most 5 neighbours, then there is a face f ′ ∈ P
with at least 7 neighbours.

Proof. Suppose that P has F faces. For a face fi ∈ P , i = 1, . . . , F , denote by V i
F the number of

finite vertices in fi and by V i
∞ the number of ideal vertices in fi. Then the average number A of

neighbouring faces in P is equal to

A =
1

F

0

i

(2V i
∞ + V i

F ) =
1

F
(8V∞ + 3VF ) =

8V∞ + 3VF

V∞ + 1
2VF + 2

. (2.4)

(1) Our aim is to show that
8V∞ + 3VF

V∞ + 1
2VF + 2

> 5,

which is equivalent to

8V∞ + 3VF > 5V∞ +
5

2
VF + 10

and

3V∞ +
1

2
VF > 10.

Using VF + V∞ > 15, we obtain

3V∞ +
1

2
VF > 3V∞ +

15

2
− 1

2
V∞ =

5

2
V∞ +

15

2
! 10

if V∞ ! 1. Thus, there is a face f ∈ P with at least 6 neigbouring faces. Analogously, using
VF + V∞ ! 15, we obtain

3V∞ +
1

2
VF ! 3V∞ +

15

2
− 1

2
V∞ =

5

2
V∞ +

15

2
> 10

if V∞ > 1. Thus, there is a face f ∈ P with at least 6 neigbouring faces.
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(2) Let us use the formula (2.4) for the average number A of neighbours:

A =
8V∞ + 3VF

V∞ + 1
2VF + 2

=
6(V∞ + 1

2VF + 2) + 2V∞ − 12

V∞ + 1
2VF + 2

!

!
6(V∞ + 1

2VF + 2)− 6

V∞ + 1
2VF + 2

= 6− 6

V∞ + 1
2VF + 2

,

where we used 2V∞ − 6 ! 0. Since V∞ + VF > 17 and V∞ ! 3, we have

V∞ +
1

2
VF + 2 ! 11 +

1

2
V∞ ! 25

2
.

Hence the average number of neighbours satisfies the following inequality

A ! 6− 12

25
=

138

25
.

Since V∞ + VF > 17 and V∞ ! 3, a polyhedron P has

F =
1

2
VF + V∞ + 2 ! 11 +

1

2
V∞ > 12

faces. But F is an integer number, so F ! 13. Assume that P has k " 6 faces with 6 neighbours.
Hence P has F − k faces with at most 5 neighbours, and an average number A of neighbours in P
satisfies the following inequality

A " 6k + 5(F − k)

F
= 5 +

k

F
" 5 +

6

13
=

71

13
.

Since 71
13 < 138

25 , we get a contradiction. Hence P has at least 7 faces such that each of them has 6
neighbouring faces.

(3) By the formula (2.4), using V∞ ! 6, we get the following inequality for the average number
of neighbours:

A =
8V∞ + 3VF

V∞ + 1
2VF + 2

=
6(V∞ + 1

2VF + 2) + 2V∞ − 12

V∞ + 1
2VF + 2

! 6.

Since A ! 6 and f has at most 5 neighbours, there is a face f ′ of P with at least 7 neighbours.
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Chapter 3

Proofs

3.1 Proof of Theorems 1.1 and 1.2

Let Σ1 and Σ2 be sets of Coxeter diagram. By Σ1×k Σ2 we denote the set of all Coxeter diagrams
S generated by subdiagrams S1 ∈ Σ1 and S2 ∈ Σ2 such that intersection S1 ∩ S2 consists of k
vertices and every Lannér or parabolic subdiagram is contained in either S1 or S2.

Denote by Lk the set of all Lannér diagrams of order k and by ∆k the standard (k − 1)-
dimensional simplex. Consider a compact hyperbolic Coxeter polytope P . Suppose that F(P ) and
F(∆k1 × · · ·×∆kn) are isomorphic. Every face of ∆k1 × · · ·×∆kn is equal to f1× · · ·×fn for some
faces fi of ∆i. Therefore, the facets of ∆k1

× · · ·×∆kn
are equal to

f i
j = ∆k1

× · · ·×∆ki−1
×fj ×∆ki+1

× · · ·×∆kn
, where fj is a facet of ∆ki

.

Let F be a set of the facets. The intersection
8

f∈F f is empty if and only if {f i
1, . . . , f

i
ki
} ⊆ F for

some 1 " i " n. According to Proposition 2.6 and Proposition 2.9, S(P ) ∈ Lk1
×0 · · ·×0 Lkn

.
Without loss of generality, k1 ! · · · ! kn. If k1 = · · · = kn = 2, then P is a n-dimensional

cube. If kn ∕= 2, then the diagram S(P ) contains no dashed edges. It is known that every such
polytope is a product of at most two simplices (see [FT08, Theorem A]). Thus, Theorem 1.2 is a
corollary of Theorem 1.1. For the reader’s convenience we present its statement again.

Theorem 1.1 ([Ale22, Theorem A]). Let n ! 4 and 2 ∕= k1 ! · · · ! kn = 2. Every diagram
contained in the set Lk1 ×0 · · ·×0 Lkn is superhyperbolic.

The plan of the proof is as follows. At first we show that if at least one Lannér subdiagram
has order ! 4 then the set under consideration is empty (Subsection 3.1.1). After that we prove
that if the diagram contains at least two Lannér subdiagrams of order 3 then it is superhyperbolic
(Subsection 3.1.2). Finally, we deal with the product of a Lannér diagram of order 3 with several
other Lannér diagrams of order 2 (Subsection 3.1.3). In order to do this we prove that the product
of a Lannér diagram of order 3 and four Lannér diagrams of order 2 is superhyperbolic. The rest
of the subsection is devoted to proving that the product of a Lannér diagram of order 3 and three
Lannér diagrams of order 2 is superhyperbolic.

3.1.1 Case k1 ! 4

Let S = 〈L1, . . . , Ln〉 be a Coxeter diagram generated by disjoint Lannér diagrams L1, . . . , Ln of
orders k1 ! · · · ! kn. Assume that S ∈ Lk1 ×0 · · ·×0Lkn . For any i = 2, . . . , n the diagram L1 has
at least one adjacent vertex vi ∈ Li (due to Proposition 2.1). The diagram S′ = 〈L1, v2, . . . , vn〉
contains exactly one Lannér subdiagram L1. In other words, a subdiagram of the diagram S′ is
hyperbolic if and only if it contains L1. Denote by ui an arbitrary vertex of L1 that is attached
to vi. Let us construct a new diagram S′′ = 〈L1, v

′
2, . . . , v

′
n〉, where v′i is adjoint only to ui by a

simple edge.
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v1 v2 v3

u1 u2 u3L1

S 0

�!

v01 v02 v03

u1 u2 u3 L1

S 00

Corollary 2.4 implies that a subdiagram of S′′ is elliptic if and only if it contains the subdiagram
L1. Therefore, L1 is the only Lannér subdiagram of S′′.

Consider a Lannér diagram L of order 4 or 5. Considering each of the finite number of such
diagrams, it can be verified that if each of three vertices is attached by a simple edge to L (like in
S′′), then it contains either a parabolic subdiagram, or a Lannér subdiagram other than L. The
same holds for S′′ and therefore for S′. This disproves the assumption.

We proved that the sets L4 ×0 { }×0 { }×0 { } and L5 ×0 { }×0 { }×0 { } are empty ( is a
Coxeter diagram consisting of one vertex). In this case, we say that no Lannér diagram of order 4
or 5 can be expanded with three vertices without forming a new Lannér or parabolic subdiagram.

3.1.2 Case k1 = k2 = 3

Consider the Lannér subdiagrams L1 = 〈u1, u2, u3〉 and L2 = 〈u4, u5, u6〉 of order 3. It is shown
in [Tum07, Lemma 4.10] that L1 and L2 are joined by a unique simple edge and if | det(L1, u3)| "
| det(L2, u4)|, then without loss of generality the subdiagram 〈L1, u4〉 is one of the following.

u1

u2

u3 u4

u1

u2

u3 u4

u1

u2

u3 u4

u1

u2

u3 u4

u1

u2

u3 u4

u1

u2

u3 u4

7

Applying the argument from Subsection 3.1.1, we get that the diagram L1 can be expanded with
two vertices. So the subdiagram 〈L1, u4〉 is the following.

u1

u2

u3 u4

So, | det(L1, u3)| =
√
2
3 . According to Proposition 2.13,

det
!
〈L1, L2〉, 〈u3, u4〉

"
= det(L1, u3) · det(L2, u4)−

1

4
.

The determinants det
!
〈L1, L2〉, 〈u3, u4〉

"
, det(L1, u3), and det(L2, u4) are not positive. Therefore,

0 ! det
!
〈L1, L2〉, 〈u3, u4〉

"
= | det(L2, u4)| ·

√
2

3
− 1

4

and

| det(L2, u4)| "
3

4
√
2
.

Note that the multiplicity of the edges u4u5 and u4u6 does not exceed one. There is the only
Lannér diagram of order 3 with such properties, which is shown below.
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u4

u5

u6

7

This diagram is not appropriate since it cannot be expanded with three vertices.

3.1.3 Case k2 = 2

A Lannér diagram of order 3 cannot be expanded with five vertices. Therefore, n " 5. Let us
denote by [u, v] the multiplicity of the edge connecting vertices u and v.

Lemma 3.1. Under the conditions described above, n " 4.

Proof. Suppose that n = 5. Denote the Lannér subdiagrams by L1 = 〈u1, u2, u3〉, L2 = 〈u4, u8〉,
L3 = 〈u5, u9〉, L4 = 〈u6, u10〉, and L5 = 〈u7, u11〉. Without loss of generality, the vertices u4, u5,
u6, and u7 are joined to the subdiagram L1. The only subdiagram 〈L1, u4, u5, u6, u7〉 that satisfies
these properties is shown below.

u1

u2 u3

u4 u5

u6 u7

It is easy to check that

[u6, u4] = [u6, u5] = [u6, u8] = [u6, u9] =

[u7, u4] = [u7, u5] = [u7, u8] = [u7, u9] = 0.

This implies that the vertices u10 and u11 are joined to the subdiagrams 〈u4, u8〉 and 〈u5, u9〉.
There are two cases:

1. Let [u10, u11] ! 1. Without loss of generality, we may assume that

[u10, u8] = [u10, u5] = [u11, u4] = [u11, u9] ! 1

and
[u11, u8] = [u11, u5] = [u10, u4] = [u10, u9] = 0.

Then
[u4, u5] = [u4, u9] = [u8, u5] = [u8, u9] = 0

and the subdiagram 〈L2, L3〉 is not connected.

2. Let [u10, u11] = 0. Then, without loss of generality, we may assume that [u6, u11] = 1. In
this case the subdiagram L5 can be joined with L2 and L3 only if

[u11, u8] = [u11, u9] ! 1.

Then
[u4, u5] = [u4, u9] = [u8, u5] = [u8, u9] = 0

and the subdiagram 〈L2, L3〉 is not connected.
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Thus, only the products of a triangle and a 3-dimensional cube left. Denote the Lannér subdi-
agrams by L1 = 〈u1, u2, u3〉, L2 = 〈u4, u7〉, L3 = 〈u5, u8〉, and L4 = 〈u6, u9〉. We suppose that the
subdiagrams 〈L1, u4〉, 〈L1, u5〉, and 〈L1, u6〉 are connected. If the subdiagram 〈L1, u4, u5, u6〉 con-
tains the only Lannér subdiagram, then all edges of the subdiagram L1 have a positive multiplicity.
This means that any vertex of the subdiagrams L2, L3, and L4 is joined to L1 by at most one edge.
Denote the multiplicity of such an edge by [u, L1]. If [u7, L1] ! 1 and [u8, L1] ! 1, then L2 and L3

are not connected. Thus, without loss of generality, [u8, L1] = [u9, L1] = 0, [u4, L1] ! [u7, L1], and
[u5, L1] ! [u6, L1] = 1.

Lemma 3.2. If [u5, L1] ! 2, then [u7, L1] = 0.

Proof. Assume that [u7, L1] ! 1. The only possible subdiagram 〈L1, L2, u5, u6〉 is shown below.

u1

u2 u3

u4 u7

u5 u6� 4

Then [u5, u4] = [u5, u7] = [u8, u4] = [u8, u7] = 0 and the subdiagrams L2 and L3 are not connected.

We may suppose that [u5, L1] = 1 since otherwise we can swap L2 and L3. The vertex u8 is
joined to L4 or the vertex u9 is joined to L3. Without loss of generality, u9 is joined to L3. The
only possible diagram 〈L1, L3, u9〉 is shown below, k′ ! 3 or l′ ! 3.

u1

u2

u3 u5

u9

u8

m

l

k k′ l′

(3.1)

Lemma 3.3. The diagram L1 is equal to the following diagram.

(3.2)

Proof. Either the diagram L1 is equal to (3.2), or 〈L1, L3, u9〉 is equal to or

. Indeed, assume the statement is false. The subdiagram S = 〈L1, L3, u9〉

is not superhyperbolic and equal to (3.1). Let us decrease k, l, m, k′ and l′, and denote the
obtained diagram by S′. Lemma 2.15 and monotonicity of the function D imply that S′ is not
superhyperbolic and Corollary 2.5 implies that S′ does not contain parabolic subdiagrams. But
by decreasing the multiplicities, one can obtain from S either one of the following superhyperbolic
(by Lemma 2.15) diagrams
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or one of the following diagrams containing a parabolic subdiagram.

Therefore, the assumption is false.

Let 〈L1, L3, u9〉 be equal to . The subdiagram 〈L1, L4, u8〉 is equal to the

following diagram.

k′ l′

k′ ! 3 or l′ ! 3 (3.3)

Let 〈L1, L3, u9〉 be equal to . Since the subdiagram 〈L2, L4〉 is connected, then

[u7, L1] = 0 and either 〈L1, L2, u9〉 or 〈L1, L4, u7〉 is equal to (3.3). To complete the proof, it
remains to note that the diagram (3.3) is superhyperbolic by the argument from the beginning of
the proof.

The next several pages will be devoted to proving that some diagrams are superhyperbolic.

Lemma 3.4. Let S be a diagram that contains a hyperbolic subdiagram and let v ∕∈ S be a vertex
that is joined with the only vertex w ∕∈ S by a dotted edge. If the inequality

det
!
〈w, S〉

"
− det(S) > 0

holds, then the diagram 〈v, w, S〉 is superhyperbolic.

v w

⇢
S

Proof. Let us choose arbitrary labels on the dotted edges. Denote by ρ the label on the dotted
edge between v and w. Direct calculation provides

det(〈v, w, S〉) = det(〈w, S〉)− ρ2 det(S).

Suppose that the diagram 〈v, w, S〉 is hyperbolic. If det(S) < 0, then

ρ "
9

det(〈w, S〉)
det(S)

=

9

1 +
det(〈w, S〉)− det(S)

det(S)
" 1.

We get det(S) = 0 and det
!
〈w, S〉

"
> 0. Therefore, the diagram 〈w, S〉 is superhyperbolic.
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Corollary 3.5. The diagrams below are superhyperbolic for any ρ1, ρ2, ρ3 > 1.

a3 a4

a6 a7

a2 a5

a1

⇢2 ⇢3

⇢1

b3 b4

b6 b7

b2 b5

b1

⇢2 ⇢3

⇢1

c7 c8

c4 c5

c3 c6

c1 c2

⇢2 ⇢3

⇢1

d8 d7

d5 d4

d2 d3

d1

d6

⇢1⇢2

e8 e7

e5 e4

e2 e3

e1

e6

⇢1⇢2

f8 f7

f5 f4

f2 f3

f1 f6

⇢1⇢2

Proof. For ρ1, ρ2, ρ3 > 1 we have

det(〈a7, A〉)− det(A) =
1

16

!
3ρ22 + 4ρ21 − 2ρ1 − 5

"
> 0,

det(〈b7, B〉)− det(B) =
1

16

!
3ρ22 + 8ρ21 − 4(

√
2− 1)ρ1 − 6−

√
2
"
> 0,

det(〈c5, C〉)− det(C) =
1

64

!
4ρ22 + 8ρ21 − 4(2−

√
2)ρ1 − 2

√
2− 3

"
> 0,

det(〈d5, D〉)− det(D) =
1

32

!
2ρ21 − (3 + 2

√
2)ρ1 + 2

√
2 + 2

"
> 0,

det(〈e5, E〉)− det(E) =
1

64

!
4ρ21 − 2(4 + 3

√
2)ρ1 + 8

√
2 + 9

"
> 0,

det(〈f5, F 〉)− det(F ) =
1

64

!
8ρ21 − 8ρ1 + 3

√
2− 4

"
> 0,

where

A = 〈a1, a2, a3, a5, a6〉, D = 〈d1, d2, d3, d4, d6, d7〉,
B = 〈b1, b2, b3, b5, b6〉, E = 〈e1, e2, e3, e4, e6, e7〉,
C = 〈c1, c2, c3, c4, c6, c7〉, F = 〈f1, f2, f3, f4, f6, f7〉.
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Lemma 3.6. The diagrams below are superhyperbolic for any ρ > 1.

S1

⇢

S2

⇢

S3

⇢

S4

⇢

S5

⇢

S6

⇢

S7

⇢

Proof. For ρ > 1 we have

det(S1) =
1

16

%
4
√
2ρ2 − 2

√
2− 1

&
> 0,

det(S2) =
1

64

%
16
√
2ρ2 − 9

√
2− 6

&
> 0,

det(S3) =
1

8

%
2
√
2ρ2 −

√
2− 1

&
> 0,

det(S4) =
1

32

%
8
√
2ρ2 + 4

√
2ρ− 4

√
2− 3

&
> 0,

det(S5) =
1

32

%
8
√
2ρ2 − 4

√
2− 3

&
> 0,

det(S6) =
1

64

%
16
√
2ρ2 − 9

√
2− 9

&
> 0,

det(S7) =
1

64

%
16
√
2ρ2 + 8

√
2ρ− 8

√
2− 9

&
> 0.

Lemma 3.7. The diagrams below are superhyperbolic for any ρ > 1.

u9 u6

u7 u8

u3 u2

u1

U

⇢ v9 v6

v7 v8

v3 v2

v1

V

⇢

w9 w6

w7 w8

w3 w2

w1

W

⇢
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Proof. For ρ > 1 we have

det(U) =
1

64

%
12
√
2ρ2 + 4

√
2ρ− 5

√
2− 6

&
> 0,

det(V ) =
1

64

%
12
√
2ρ2 + 8ρ− 2

√
2− 3

&
> 0,

det(W ) =
1

128

%
24
√
2ρ2 + 4

√
2(1 +

√
5)ρ+ 3

√
10 + 3

√
5− 7

√
2− 9

&
> 0.

Let us remind that we suppose that [u8, L1] = [u9, L1] = 0, [u4, L1] ! [u7, L1], and [u5, L1] =
[u6, L1] = 1. Thus, the subdiagram 〈L1, u4, u5, u6〉 is one of the following.

A u1

u2 u3

u4

u5 u6

B u1

u2 u3

u4

u5 u6

C u1

u2 u3

u4

u5 u6

D u1

u2 u3

u5

u4 u6

E u1

u2 u3

u5

u4 u6

F u1

u2 u3

u4

u5 u6

Case A

[u5, u4] = [u5, u7] = [u4, u8] = 0,

[u4, u6] = [u4, u9] = [u6, u7] = 0,

[u5, u6] = [u5, u9] = [u6, u8] = 0.

Otherwise, there is either a parabolic or hyperbolic subdiagram that must be elliptic. This implies
that [u7, u8] ∕= 0, [u8, u9] ∕= 0, and [u9, u7] ∕= 0. Then the subdiagram 〈u7, u8, u9〉 is not elliptic.

Case B

By the same argument we get

[u5, u4] = [u5, u7] = [u4, u8] = 0,

[u4, u6] = [u4, u9] = [u6, u7] = 0,

[u5, u6] = 0.
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This yields that, without loss of generality,

1 " [u7, u8], 1 " [u7, u9] " 3, [u8, u9] = 0,

[u6, u8] = 1, [u7, u8] = 1, [u5, u9] ∈ {0, 1},
[u7, u1] = [u7, u2] = [u7, u3] = 0.

Therefore, the diagram is equal to the shown below.

u1

u2 u3

u4

u5 u6

u7

u8 u9

2, 3

3, 4, 5

From Lemma 3.7 it follows that the subdiagram 〈u1, u2, u3, u6, u7, u8, u9〉 is superhyperbolic.

Case C

[u5, u4] = [u5, u7] = [u6, u4] = [u6, u7] = 0.

Let [u7, u1] = 0. Suppose that [u8, u7] = 0. Then

1 " [u4, u8] " 2, [u6, u5] = [u6, u8] = 0.

Corollary 3.5 (D and E) implies that the diagram 〈u1, u2, u3, u4, u5, u6, u7, u8〉 is superhyperbolic.
Therefore, [u8, u7] ! 1. For similar reasons, [u9, u7] ! 1. Without loss of generality, [u8, u6] = 1,
[u8, u7] = 1, and 1 " [u9, u7] " 3. The subdiagram 〈u1, u2, u3, u6, u7, u8, u9〉 is superhyperbolic
due to Lemma 3.7.

Let [u7, u1] = 1, then the only possible diagram is shown below.

u1

u2 u3

u4

u5 u6

u7

u8 u9

3, 4

Corollary 3.5 (A and B) implies that the subdiagram 〈u1, u4, u5, u6, u7, u8, u9〉 is superhyperbolic.

Case D

The case [u7, L1] = 0 is considered in the previous paragraph, so [u7, L1] ∕= 0. Moreover, [u7, u3] =
0. Suppose that [u7, u2] ! 1. Then the diagram 〈L2, L3〉 is not connected. Therefore, [u7, u2] = 0
and [u7, u1] = 1. The equality

[u4, u5] = [u4, u8] = [u7, u5] = 0
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implies that [u7, u8] ∕= 0. It is easy to check that

[u4, u6] = [u7, u6] = [u5, u6] = [u8, u6] = 0.

Suppose that [u5, u9] ! 1. Then [L2, u9] = 0 and the subdiagram 〈L2, L4〉 is not connected.
Therefore, [u5, u9] = 0, [u8, u9] ! 1, [u7, u9] = 0, and [u4, u9] ! 1. The only possible diagram is
shown below.

u1

u2 u3

u4

u5

u6

u7

u8

u9

⇢1

⇢2

⇢3

But this diagram is superhyperbolic since

det(〈u1, u2, u3, u5, u7, u8, u9〉) =
1

32

%
4
!
2
√
2 + 1

"
ρ22 − 4ρ2 −

!
4
√
2 + 5

"&
> 0

for all ρ2 > 1.

Case E

Let [u7, L1] = 0. Lemma 2.15 implies that the diagrams below are superhyperbolic.

The diagram contains a parabolic subdiagram. Using Remark 2.16, we get

that if k ! 4 or l ! 4, then the diagram below is superhyperbolic for any ρ > 1.

k l

⇢

By the same argument, if k ! 4 or l ! 4, then the diagram below either contains an unwanted
parabolic or Lannér subdiagram or is superhyperbolic for any ρ > 1.

k l

⇢
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Therefore, the multiplicity of every edge between the subdiagrams L2, L3, and L4 does no exceed 1.

Applying Lemma 3.6 (S1–S4) to the subdiagram 〈u1, u2, u3, u4, u7, u8, u9〉, we obtain that

[u7, u8] = [u4, u8] = 0 or [u7, u9] = [u4, u9] = 0.

By the same argument,

[u9, u8] = [u6, u8] = 0 or [u9, u7] = [u6, u7] = 0.

Note that the diagram below contains a parabolic subdiagram.

Thus, applying Lemma 3.6 (S5–S7) to the subdiagram 〈u1, u2, u3, u5, u7, u8, u9〉, we obtain that

[u8, u7] = [u5, u7] = 0 or [u8, u9] = [u5, u9] = 0.

It is easy to check that, without loss of generality, the only diagram with such properties is shown
below.

u1

u2
u3

u4

u5

u6

u7

u8

u9

d1

d2

d3

But Corollary 3.5 (F ) implies that the subdiagram 〈u1, u2, u3, u4, u6, u7, u8, u9〉 is superhyperbolic.

Let [u7, L1] ∕= 0. Then [u7, u2] = 0. We also may suppose that [u7, u1] ∕= 0 since [u7, u3] ∕= 0 is
already considered in Case D.

[u5, u4] = [u5, u7] = [u6, u4] = [u6, u7] = 0.

Without loss of generality, the only such diagram is shown below.

u1

u2
u3

u4

u5

u6
u7

u8

u9

⇢1

⇢2

⇢3

3, 4
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It is easy to calculate that for ρ > 1

det(〈u1, u2, u3, u6, u7, u8, u9〉) =
1

32

%
4(1 + 2

√
2)ρ23 − 4ρ3 − 4

√
2− 5

&
> 0

and

det(〈u1, u2, u3, u6, u7, u8, u9〉) =
1

32

%
4(1 + 2

√
2)ρ23 − 4ρ3 − 2

√
2− 3

&
> 0.

Case F

Let [u7, L1] ∕= 0. The opposite is considered in Case E. The only such diagrams are shown below.

u1

u2 u3

u4

u5 u6

u7

u8 u9

⇢1

⇢2 ⇢3

v1

v2 v3

v4

v5 v6

v7

v8 v9

⇢1

⇢2 ⇢3

Corollary 3.5 (C and A) implies that 〈u2, u3, u4, u5, u6, u7, u8, u9〉 and 〈v2, v4, v5, v6, v7, v8, v9〉 are
superhyperbolic.

3.2 Proof of Theorem 1.3

We say that a polytope is 3-free if every set of facets with an empty intersection contains a pair
of disjoint facets. Proposition 2.9 implies that the Coxeter diagram of a compact 3-free Coxeter
polytope contains no Lannér subdiagrams of order ! 3. Our aim is to prove Theorem 1.3.

The proof is similar to the proof of [Bur22, Theorem 9.4], which is based on the proof of [Vin85,
Theorem 6.1]. Thus, we need the Nikulin inequality.

Theorem 3.8 ([Nik81, Theorem 3.2.1]). Let θ0, . . . , θk−1 be non-negative reals, k "
:
d
2

;
, and P a

d-dimensional convex polytope. The following inequality holds

1

αP
k

0

Q<P
dimQ=k

k−10

i=0

θiα
Q
i <

k−10

i=0

θiA
(i,k)
d ,

where αR
k is a number of k-dimensional faces of a polytope R, the notation Q < P means that Q

is a face of P , and

A
(i,k)
d =

(
d− i

k − i

)
·
!⌈d/2⌉

i

"
+
!⌊d/2⌋

i

"
!⌈d/2⌉

k

"
+
!⌊d/2⌋

k

" .

Corollary 3.9. Consider a simple convex d-dimensional polytope, d ! 3. The mean edge number
of its 2-dimensional faces is less than

A
(1,2)
d =

<
4(d−1)
d−2 , d is even;
4d
d−1 , d is odd.

Let P ⊂ Hd be a compact Coxeter polytope whose Coxeter diagram S contains no Lannér
subdiagrams of order ! 3. Denote by al the number of its l-dimensional faces and by a2,k the
number of its 2-dimensional k-gonal faces. Note that the absence of high-order Lannér subdiagrams
implies that a2,3 = 0.
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Lemma 3.10. Under these assumptions, a2,4 " a0 · (d− 1).

T

v1

v2

u1

u2

Proof. Let T be the subdiagram of the diagram S that corresponds to a 4-gonal face (in the sense
of Proposition 2.7). There are vertices v1, v2, u1, u2 of the diagram S such that the diagrams 〈T, vi〉,
〈T, ui〉, and 〈T, vi, uj〉 are elliptic for i, j ∈ {1, 2} and the diagrams 〈T, v1, v2〉 and 〈T, u1, u2〉 are
not. Therefore, the subdiagrams 〈v1, v2〉 and 〈u1, u2〉 are Lannér diagrams. Indeed, since 〈T, u1, u2〉
is a hyperbolic diagram, it contains a Lannér subdiagram L which is not contained in either 〈T, u1〉
or 〈T, u2〉. Then L contains both u1 and u2. The diagram S contains only Lannér subdiagrams of
order 2. Hence, L = 〈u1, u2〉.

Since the diagram 〈v1, v2, u1, u2〉 is not superhyperbolic, then, without loss of generality, we
may assume that [v1, u1] ! 1. The elliptic diagram 〈T, v1, u1〉 and its edge v1u1 correspond to
an angle of the 4-gonal face. The diagram 〈T, v1, u1〉 is an elliptic subdiagram of order d. Such
diagrams correspond to vertices of the polytope P , and there are a0 of them. Also, elliptic diagrams
contain no cycles (Corollary 2.3). Therefore, they contain at most d− 1 edges.

Thus, every quadrilateral face is associated to at least one pair of an elliptic subdiagram
〈T, v1, u1〉 of order d and its edge v1u1. Since the number of edges contained in the subdia-
gram does not exceed d − 1 and the number of such subdiagrams equals a0, we conclude that
a2,4 " a0 · (d− 1).

Proof of Theorem 1.3. Let d ! 13. Assume that there exists a compact hyperbolic Coxeter poly-
tope P ⊂ Hd whose Coxeter diagram S contains no Lannér subdiagrams of order ! 3. From
Corollary 3.9 it follows that the mean number of vertices in 2-dimensional faces κ =

!
d
2

"
· a0

a2
is less

than 4·13
12 = 4 1

3 . Since P contains no 2-dimensional triangular faces,

a2,4 >
2

3
· a2 =

2

3
·
(
d

2

)
· a0
κ

>
2

3
· 13 · 12

2
· a0
13/3

= 12a0.

On the other hand, Lemma 3.10 implies that a2,4 " a0 · (d− 1) " 12a0.

3.3 Proof of Theorem 1.5

Consider an ideal 7-dimensional right-angled hyperbolic polyhedron P . Let ak denote the number of
its k-dimensional faces (we use fk only for simplicial polytopes to avoid confusion). The polyhedron
P is combinatorially equivalent to a Euclidean polytope. Let us cut off all the vertices of the
Euclidean polytope and denote the resulting truncated polytope by P ′. Let a′k denote the number
of k-dimensional faces of P ′. The following equalities hold:

a′0 = 64a0, a′1 = a1 + 192a0, a′2 = a2 + 240a0,
a′3 = a3 + 160a0, a′4 = a4 + 60a0, a′5 = a5 + 12a0,

a′6 = a6 + a0.

The polyhedron P is simple at edges. Therefore, the polytope P ′ is simple, and its dual is
simplicial. This fact allows us to apply the Dehn–Sommerville equations:

a3 + 160a0 = 5(a4 + 60a0) − 15(a5 + 12a0) + 35(a6 + a0) − 70,
a2 + 240a0 = 9(a4 + 60a0) − 34(a5 + 12a0) + 84(a6 + a0) − 168,
a1 + 192a0 = 7(a4 + 60a0) − 28(a5 + 12a0) + 70(a6 + a0) − 140,

64a0 = 2(a4 + 60a0) − 8(a5 + 12a0) + 20(a6 + a0) − 40.
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After simplifications we obtain:

a3 = 5a4 − 15a5 + 35a6 − 5a0 − 70,
a2 = 9a4 − 34a5 + 84a6 − 24a0 − 168,
a1 = 7a4 − 28a5 + 70a6 − 38a0 − 140,
0 = 2a4 − 8a5 + 20a6 − 20a0 − 40.

Then the average number of vertices in a 2-dimensional face of P equals

κ =
192a0
a2

=
192/20(2a4 − 8a5 + 20a6 − 40)

9a4 − 34a5 + 84a6 − 24a0 − 168
=

=
192/20(2a4 − 8a5 + 20a6 − 40)

9a4 − 34a5 + 84a6 − 24/20(2a4 − 8a5 + 20a6 − 40)− 168
=

=
32

11

(
1− 2a5 − 6a6 + 12

a2

)
.

We claim that a5 > 3a6 and therefore κ < 32
11 < 3. The latter readily implies the absence of

7-dimensional hyperbolic ideal right-angled polyhedra since every 2-dimensional face contains at
least three vertices.

Indeed, every face of an ideal right-angled hyperbolic polyhedron is itself an ideal right-angled
hyperbolic polyhedron. Every 6-dimensional finite volume right-angled hyperbolic polyhedron has
at least 27 facets [Duf10, Lemma 1 and Proposition 4]. On the other hand, every 5-dimensional
face of P is contained in exactly two 6-dimensional faces of P . Thus, 2a5 ! 27a6.

3.4 Proof of Theorem 1.6

Let P be a finite volume hyperbolic 13-dimensional right-angled polyhedron. Denote the number
of its k-dimensional faces by ak, the number of its finite vertices by v0, and the number of its
ideal vertices by v∞. Obviously, a0 = v0 + v∞. The polyhedron P is combinatorially equivalent
to a Euclidean polytope. Let us cut off all the vertices of the Euclidean polytope that correspond
to the ideal vertices of P and denote the obtained polytope by P ′. Let a′k denote the number of
k-dimensional faces of P ′. The following equalities hold:

a′0 = 4096 v∞ + v0, a′1 = 24 576 v∞ + a1, a′2 = 67 584 v∞ + a2,
a′3 = 112 640 v∞ + a3, a′4 = 126 720 v∞ + a4, a′5 = 101 376 v∞ + a5,
a′6 = 59 136 v∞ + a6, a′7 = 25 344 v∞ + a7, a′8 = 7920 v∞ + a8,
a′9 = 1760 v∞ + a9, a′10 = 264 v∞ + a10, a′11 = 24 v∞ + a11,

a′12 = v∞ + a12.

The polyhedron P is simple at edges. Therefore, the polytope P ′ is simple, and its dual is
simplicial. This fact allows us to apply the Dehn–Sommerville equations. After simplifications we
obtain:

a6 = −1716a12 + 792a11 − 330a10 + 120a9 − 36a8 + 8a7 − 132v∞ + 3432,
a5 = −9009a12 + 4125a11 − 1683a10 + 585a9 − 159a8 + 27a7 − 1089v∞ + 18 018,
a4 = −20 020a12 + 9130a11 − 3685a10 + 1252a9 − 325a8 + 50a7 − 3740v∞ + 40 040,
a3 = −24 024a12 + 10 934a11 − 4389a10 + 1474a9 − 374a8 + 55a7 − 6864v∞ + 48 048,
a2 = −16 380a12 + 7448a11 − 2982a10 + 996a9 − 250a8 + 36a7 − 7116v∞ + 32 760,
a1 = −6006a12 + 2730a11 − 1092a10 + 364a9 − 91a8 + 13a7 − 3958v∞ + 12 012,
v0 = −924a12 + 420a11 − 168a10 + 56a9 − 14a8 + 2a7 − 924v∞ + 1848.

Let α0 =
!
13
2

"
and α∞ = 12 · 211 denote the number of 2-faces containing a finite and ideal

vertex, respectively. The average number of vertices in a 2-dimensional face of a finite volume
right-angled hyperbolic 13-polyhedron is equal to

κ =
α0v0 + α∞v∞

a2
.
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According to Nikulin inequality, κ < 13
3 . Let us consider the following difference:

(
α0v0 +

10309

6144
· α∞v∞

)
− 13

3
· a2 = 2184− 26

3
a8 + 52a9 − 182a10 +

1456

3
a11 − 1092a12.

The coefficients 13
3 and 10309

6144 are chosen so in order to cancel a7 and v∞ on the right-hand side.
We claim that the difference is negative. Indeed, every face of a hyperbolic finite volume

right-angled polyhedron is itself a hyperbolic finite volume right-angled polyhedron. Every 9-
dimensional hyperbolic finite volume right-angled polyhedron has at least 152 facets and every
11-dimensional hyperbolic finite volume right-angled polyhedron has at least 564 facets ([Duf10,
Lemma 1 and Proposition 4]). However, every 8-face is contained in exactly five 9-faces and every
10-face is contained in exactly three 11-faces. Thus, 152a9 " 5a8 and 564a11 " 3a10. Therefore,
52a9 − 26

3 a8 < 0 and 1456
3 a11 − 182a10 < 0. Finally, a12 > 2, so 2184− 1092a12 < 0.

Thus we proved that
α0v0 +

10309
6144 · α∞v∞

a2
<

13

3
.

The left part of the inequality is a weighted average number of the vertices in 2-dimensional faces:
the contribution of every finite vertex equals 1 and the contribution of every ideal vertex equals
10309
6144 > 1.6778. Meanwhile, 2 · 10309

6144 > 3.3557 and 3 · 10309
6144 > 5.03369. Every 2-face of a finite

volume right-angled polyhedron is either contains at least 3 ideal vertices, or 2 ideal and 1 finite
vertices, or 1 ideal and 3 finite vertices, or 5 finite vertices. Therefore, the weighted average number
of the vertices in 2 dimensional face is greater than 4.34 > 13

3 . This contradicts the bound we
obtained.

3.5 Proof of Theorem 1.8

Recall that Pn denotes the family of finite volume non-compact right-angled hyperbolic polyhedra,
ak(P ) and v∞(P ) denote the number of k-faces and the number of ideal vertices of a finite volume
right-angled hyperbolic polyhedron P respectively. For a polyhedron P denote by alk(P ) the
average number of l-faces of a k-face. In other words,

alk(P ) =
1

ak(P )

0

dimF=k

al(F ),

where F runs over all k-faces of P .

Proposition 3.11 ([Nik81], [Kho86, Theorem 10]). Let P be an n-polytope that is simple at edges.
Then

alk(P ) <

(
n− l

n− k

)!⌈n/2⌉
l

"
+
!⌊n/2⌋

l

"
!⌈n/2⌉

k

"
+
!⌊n/2⌋

k

" .

In [Non15] Nonaka studied the right-angled hyperbolic 3-polyhedra with a single ideal vertex
and obtained the following result.

Proposition 3.12 ([Non15, Corollary 3.6]). If P 3 is a finite volume right-angled hyperbolic 3-
polyhedron and v∞(P 3) " 1, then a2(P

3) ! 12.

Corollary 3.13. If P 5 ∈ P5, then v∞(P 5) ! 2.

Proof. Suppose that v∞(P 5) " 1. Every 3-face of P 5 is a right-angled hyperbolic 3-polyhedron
of finite volume with at most one ideal vertex. Therefore, according to Proposition 3.12, every
3-face of P contains at least 12 facets and a23(P

5) ! 12. Meanwhile, according to Proposition 3.11,
a23(P

5) < 12.

Let ν(P ) = an−1(P ) + v∞(P ) and if Pn ∕= ∅, let

νn = min
Pn∈Pn

ν(Pn).

Dufour used this value to prove Theorem 1.6. He discovered the following relations.
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Proposition 3.14 ([Duf10, Proposition 4]). ν5 ! 26.

Proposition 3.15 ([Duf10, Lemma 1]). Let Pn ∈ Pn with n ! 3. Then

an−1(P
n) ! 1 + νn−1.

Proposition 3.16 ([Duf10, Lemma 2]). Let n ! 3. Then

νn ! 5− 2n+ 2νn−1.

Using the double counting technique, one can bound the number of the ideal vertices of a finite
volume right-angled hyperbolic polyhedra from below as follows.

Lemma 3.17. Let Pn ∈ Pn.

v∞(Pn) ! an−1(P
n) · v′∞(Pn)

2 (n− 1)
,

where v′∞(Pn) is the minimal number of ideal vertices that a facet of Pn contains.

Proof. Since every ideal vertex of the polytope Pn is contained in exactly 2 (n − 1) facets, the
following inequality holds:

v∞(Pn) · 2 (n− 1) =
0

dimF=n−1

v∞(F ) ! an−1(P
n) · v′∞(Pn),

where F runs over all facets of Pn.

Let Pn ∈ Pn. Proposition 3.14 and Proposition 3.16 imply that ν5 ! 26, ν6 ! 45, and ν7 ! 81.
Proposition 3.15, Corollary 3.13, and Lemma 3.17 provide

a5(P
6) ! 27, v∞(P 6) !

=
27 · 2
10

>
= 6,

a6(P
7) ! 46, v∞(P 7) !

=
46 · 6
12

>
= 23,

a7(P
8) ! 82, v∞(P 8) !

=
82 · 23
14

>
= 135.

Now applying the definition of νn, Proposition 3.15, and Lemma 3.17 we obtain

ν8 ! 217, a8 (P 9) ! 218, v∞(P 9) ! 1704,

ν9 ! 1922, a9 (P 10) ! 1923, v∞(P 10) ! 182 044,

ν10 ! 183 967, a10 (P 11) ! 183 968, v∞(P 11) ! 1 674 504 428,

ν11 ! 1 674 688 396, a11 (P 12) ! 1 674 688 397, v∞(P 12) ! 127 466 960 740 760 088.

3.6 Proof of Theorem 1.9

The Lobachevsky function is concave on the interval [0, π
2 ] which implies that

m0

k=1

Λ (xk) " mΛ

(1m
k=1 xk

m

)
.

Let P be an ideal right-angled hyperbolic polyhedron and v a vertex of P , which will further be
called an apex. For every face f there is a unique projection u of point v to f . The projection will
lie on the interior of f unless f meets one of the faces containing v. Projecting u to the edges of f
will decompose P into tetrahedra known as orthoschemes: a hyperbolic tetrahedron with vertices
P1, P2, P3, and P4 is said to be an orthoscheme if edge P1P2 is orthogonal to plain P2P3P4, and
P1P2P3 is orthogonal to P3P4. Such a decomposition for the face formed by the vertices v1, v2, v3,
and v4 is shown in Figure 3.1.
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Figure 3.1: Decomposition of an ideal right-angled polyhedron.

Thus, we get eight tetrahedra having a common edge vu. Consider a tetrahedron formed by v,
u, w4, and v4, where vertices v and v4 are ideal, and vertices u and w4 are finite. Dihedral angles
at edges vw4, w4u and uv4 equal π/2. If dihedral angle at vu equals α, then dihedral angle at vv4
equals π/2−α and dihedral angle at v4w4 equals to α. Thus, this tetrahedron is determined by α,
and we call α a parameter of the tetrahedron. By [Thu80, Chapter 7], volume of the tetrahedron
formed by v, u, w4, and v4 equals 1

2Λ(α).

Example 3.18. Let P be the antiprism A(4) with the vertex set V = {v1, v2, . . . , v8}. A decompo-
sition of the A(4) with apex at v1 is shown in Figure 3.2. Let us define a tetrahedral cone C(v) of
the vertex v as the union of tetrahedra of a decomposition containing v. Therefore, A(4) splits in

cones and Vol(A(4)) =
18

k=2 Vol(C(vk)).

v1 v2

v3v4

v5

v6

v7

v8

v1 v2

v3v4

v6

v7

v8

Figure 3.2: Antiprism A(4) and its decomposition.

Vertices v2, v4, v5, and v8 are adjacent to v1. The cone C(v4) consists of two tetrahedra with
parameters α and β. Since the dihedral angle at the edge v1v4 is π/2, then the sum (π/2 − α) +
(π/2− β) equals π/2 and α+ β equals π/2. The concavity of Λ(x) implies

Vol(C(v4)) =
1

2
Λ(α) +

1

2
Λ(β) " Λ

%π
4

&
.

The same holds for every vertex adjacent to v1. For more details see [Atk09, Prop. 5.2].
A similar argument provides Vol(C(v)) " 2Λ(π/4) if v is quasi-adjacent to v1 (i.e., v3), and
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Vol(C(v)) " 4Λ(π/4) for every other v (i.e., v6 and v7). So

Vol(A(4)) " 4 · Λ
%π
4

&
+ 1 · 2Λ

%π
4

&
+ 2 · 4Λ

%π
4

&
= 14Λ

%π
4

&
.

Example 3.18 shows the idea of the proof of the following lemma.

Lemma 3.19. Let P be an ideal right-angled hyperbolic polyhedron with V vertices. If there is a
vertex with m quasi-adjacent vertices, then

Vol(P ) "
%
V − 4− m

2

&
· v8
2
.

Proof. Every vertex has exactly four adjacent vertices. This fact provides

Vol(P ) " (V − 1− 4−m) · 4Λ
%π
4

&
+m · 2Λ

%π
4

&
+ 4 · Λ

%π
4

&
=

%
V − 4− m

2

&
· 4Λ

%π
4

&
.

The lemma is proved.

To prove item (3) of Theorem 1.9 we shall sum up the volumes of the tetrahedra not over the
vertices but over the faces. A tetrahedral cone C(f) of the face f is a union of the decomposition
tetrahedra having a part of f as a face. Such a cone is shown at the bottom left in Figure 3.1.

Lemma 3.20. Let P be a decomposed ideal right-angled hyperbolic polyhedron and f a k-gonal
face of P that does not contain the apex.

(1) If f is quasi-incident to the apex, then

Vol(C(f)) " (k − 1) · Λ
*

π

2k − 2

+
.

(2) If f is not quasi-incident to the apex, then Vol(C(f)) " kΛ
!
π
k

"
.

Proof. If f is quasi-incident to the apex, then the projection of the apex does not lie inside f and
the cone C(f) contains 2k − 2 tetrahedra of the decomposition (like v3v4v7 in Figure 3.2) and

Vol(C(f)) =

2k−10

i=2

1

2
Λ(αi) " (k − 1) · Λ

*
π

2k − 2

+
, where

2k−10

i=2

αi = π.

If f is not quasi-incident to the apex, then the projection of the apex lies inside f and the cone
C(f) contains 2k tetrahedra of the decomposition (like v3v6v7 in Figure 3.2) and

Vol(C(f)) =

2k0

i=1

1

2
Λ(αi) " k · Λ

*
π

k

+
, where

2k0

i=1

αi = 2π.

The lemma is proved.

Now let us prove Theorem 1.9.

Proof. Lemma 3.19, Lemma 2.22, and Remark 2.23 provide items (1) and (2) of Theorem 1.9.
Let us prove item (3). Let P be an ideal right-angled hyperbolic polyhedron with V ! 73

vertices and F faces that are only triangular and quadrilateral. By Proposition 2.24 there is a
vertex quasi-incident to 8 pairwise different quadrilaterals. Then by Lemma 3.20

Vol(P ) " 8 · 3Λ
%π
3

&
+ 8 · (4− 1)Λ

(
π

2 · 4− 2

)
+ (F − 20) · 4Λ

%π
4

&
=

= (V − 18) · 4Λ
%π
4

&
+ 24 ·

$
Λ
%π
3

&
+ Λ

%π
6

&'
.

To complete the proof we recall that v8 = 8Λ (π/4) and v3 = 3Λ (π/3) = 2Λ (π/6) (since Λ(x) is
an odd function, π-periodic and Λ(2x) = 2Λ(x) + 2Λ(x+ π

2 ), see [Thu80, Lemma 7.1.4]).

37



3.7 Proof of Theorem 1.10

3.7.1 Proof of statement (1)

Let us use the enumeration of faces as in Figure 2.4, with f1 and f3 containing e. Since V > 80,
then by Corollary 2.27 there is an edge e ∈ P such that for ki-gonal faces fi, i = 1, . . . , 4 we have14

i=1 ki ! 24.
Let P ′ be a polyhedron obtained by gluing P with its image under reflection in the plane passing

through the face f1. Then P ′ has V ′ = 2V − 2k1 vertices. Denote by f ′
2 a (2k2 − 4)-gonal face of

P ′ containing f2, by f ′
3 a (2k3 − 4)-gonal face of P ′ containing f3, and by f ′

4 a (2k4 − 4)-gonal face
of P ′ containing f4.

Recall the following volume bound from [EV20b].

Lemma 3.21 ([EV20b, Corollary 3.2]). Let P be a compact right-angled hyperbolic 3-polyhedron
with V vertices. Let f1, f2, and f3 be three faces of P such that f2 is adjacent to both f1 and f3,
and fi is ki-gonal for i = 1, 2, 3. Then the following formula holds:

Vol(P ) " (V − k1 − k2 − k3 + 4) · 5v3
8

.

Applying Lemma 3.21 to the polyhedron P ′ we get

2Vol(P ) = Vol(P ′) " (2V − 2k1 − (2k2 − 4)− (2k3 − 4)− (2k4 − 4) + 4) · 5v3
8

,

whence

Vol(P ) " (V − k1 − k2 − k3 − k4 + 8) · 5v3
8

" (V − 16) · 5v3
8

=
5v3
8

· V − 10v3,

where we used inequality
14

i=1 ki ! 24. Statement (1) is proved,

3.7.2 Proof of statement (2)

Denote k1 = k. Since any face of P has at least 5 sides, we have ki ! 5 for i = 2, 3, 4. Then, from
preceding inequality we get

Vol(P ) " (V − k − 5− 5− 5 + 8) · 5v3
8

=
5v3
8

· V − 5k + 35

8
v3.

Thus, Theorem 1.10 is proved.

3.8 Proof of Theorem 1.11

Observe that formula (1.1) implies that the following upper bound holds for a polyhedron P with
V∞ > 0 ideal and VF finite vertices:

Vol(P ) <
v8
2

· V∞ +
5v3
8

· VF − v8
2
.

Let P 1 denote the polyhedron P , and let k1∞, resp. k1F , be the number of ideal, resp. finite,
vertices of a face f1 of P 1. Consider P 2 the union of P 1 with its image under the reflection is the
plane containing the face f1. Then P 2 is right-angled with V 2

∞ = 2V∞ − k1∞ ideal vertices and
V 2
F = 2VF − 2k1F finite vertices. Then applying to P 2 the upper bound from (1.1), we get

Vol(P ) =
Vol(P 2)

2
<

v8
2

· V∞ +
5v3
8

· VF −
(
v8
4

· k1∞ +
5v3
8

· k1F +
v8
4

)
=

=
v8
2

· V∞ +
5v3
8

· VF − c1 −
v8
4
,
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where

c1 =
v8
4

· k1∞ +
5v3
8

· k1F .

Let k2∞, resp. k2F , be the number of ideal, resp. finite, vertices of a face f2 of P 2. Consider
P 3 the union of P 2 with its image under the reflection in the plane containing the face f2. Then
P 3 is right-angled with V 3

∞ = 4V∞ − 2k1∞ − k2∞ ideal vertices and V 3
F = 4VF − 4k1F − 2k2F finite

vertices. Applying to P 3 the upper bound from (1.1), we get

Vol(P ) =
Vol(P 3)

4
<

v8
2

· V∞ +
5v3
8

· VF − c1 − c2 −
v8
8
,

where
c2 =

v8
8

· k2∞ +
5v3
16

· k2F .

Continuing the process inductively, we obtain

Vol(P ) <
v8
2

· V∞ +
5v3
8

· VF − c1 − c2 − . . .− cn − v8
2n+1

, (3.4)

where for i = 1, . . . , n we have

ci =
v8
2i+1

· ki∞ +
5v3
2i+2

· kiF .

Suppose that for every i = 1, 2, . . . , the face f i is not an ideal triangle and has at least 6
neighbouring faces. It will be demonstrated in Lemma 3.22 below that one can choose such a face
f i of P i for every i. Then the value ci is minimal for ki∞ = 2 and kiF = 2. Thus, we get that

n0

i=1

ci !
(
v8 +

5v3
2

)
·
*

n0

i=1

1

2i

+
=

(
v8 +

5v3
2

)
·
(
1− 1

2n

)
.

Taking the limit n → ∞ in (3.4), we obtain

Vol(P ) " v8
2

· V∞ +
5v3
8

· VF −
(
v8 +

5v3
2

)
.

Thus, the bound from Theorem 1.11 is obtained. It remains to prove Lemma 3.22.

Let N6(P ) denote the set of faces of a polyhedron P with the following property: f ∈ N6(P )
if f has at least 6 neighbouring faces. This set is non-empty by part (1) of Lemma 2.28.

Lemma 3.22. If V∞ + VF > 17 then for any i = 1, . . . , n the set N6

!
P i

"
contains at least one

face that is not an ideal triangle.

Proof. Let us observe that for any i ! 1 the polyhedron P i is not an octahedron. Indeed, this
holds true for P 1 = P since V 1

∞ = V∞, V 1
F = VF and V 1

∞ + V 1
F > 17. Assume by a contradiction

that P 2 is an octahedron. Then 2V 1
∞ ! V 2

∞ = 6 and

Vol
!
P 2

"
= 2 · Vol

!
P 1

"
! 2 · 4V

1
∞ + V 1

F − 8

32
· v8 >

4V 1
∞ + 17− V 1

∞ − 8

16
· v8 ! 18 · v8

16
> v8,

which is a contradiction. Finally, let us show that for any i ! 3 polyhedron P i is not an octahedron.
If we assume by a contradiction that P i is an octahedron, then it would hold that V 1

∞ ! 1 and by
inequality (1.1) we would obtain

Vol
!
P i

"
! 2i−1 · 4V

1
∞ + V 1

F − 8

32
· v8 >

> 2i−6 · (4V 1
∞ + 17− V 1

∞ − 8) · v8 !

! 12 · 2i−6 · v8 =
3

2
· 2i−3 · v8 > v8,

which is again a contradiction.
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Let i = 1 and assume by a contradiction that all faces from N6(P
1) are ideal triangles. Then

part (2) of Lemma 2.28 implies that N6(P
1) contains at least 7 ideal triangles. Denote the set of

the faces of P 1 by F and the number of the ideal vertices of a face f by I(f). Suppose that P 1

contains at most 5 ideal vertices. Then we get a contradiction:

21 = 3 · 7 "
0

f∈F
I(f) " 4 · 5 = 20.

Thus, P 1 contains at least 6 ideal vertices.
Since P 1 is not an octahedron, there is a face f ′ that is not an ideal triangle. Therefore,

f ′ ∕∈ N6(P
1), whence f ′ has at most 5 neighbouring faces. Then by part (3) of Lemma 2.28 there

is a face f ′′ which has at least 7 neighbouring faces. Therefore, f ′′ is not an ideal triangle. However
f ′′ ∈ N6(P

1), which contradicts the assumption.

Now let i ! 2 and assume by a contradiction that for some i ! 2 each face from N6

!
P i

"
is an

ideal triangle. The polyhedron P i is the union of two copies of P i−1 along the face f i−1. Let Di−1

be the set of faces of P i−1 that have a common edge with f i−1. Let Si denote the set of such faces
of P i that contain a face from Di−1. That is, Si consists of all of the new faces that appeared
after the union of two copies of P i−1 along f i−1. By Theorem 2.17, each face of a right-angled
polyhedron has at least 5 neighbours. Hence each face from the set Si has at least 6 neighbours
and Si ⊂ N6(P

i). Therefore, by our assumption, each face from Si is an ideal triangle. Then
each face from Di−1 is a triangle with two ideal and one finite vertices. Moreover, f i−1 is a face
with an even number of vertices, such that its ideal and finite vertices alternate among themselves.
Namely, if f i−1 has 2k vertices, then there are k ideal and k finite vertices, and k ! 2.

Observe that there are at least 2 ideal vertices in P i−1 that are not contained in the face f i−1.
Indeed, since all faces from Di−1 are triangles with 2 ideal vertices, then P i−1 has at least one
ideal vertex v that is not contained in the face f i−1. Suppose that v is the only such vertex. Then
v is incident to all of the vertices of f i−1. If k ! 3, then v is a vertex of valency 2k. The latter is
impossible by Theorem 2.17. If k = 2 then P i−1 is a quadrilateral pyramid with 5 faces, while by
Theorem 2.17 the quadrilateral pyramid is not a right-angled polytope. Thus, P i−1 should have
at least 2 ideal vertices that are not contained in the face f i−1.

Hence P i has at least k + 4 ! 6 ideal vertices. Since P i is not an octahedron, it has at least
one face f ′ that is not an ideal triangle. Using part (3) of Lemma 2.28 we obtain that there is a
face f ′′ of P i that has at least 7 neighbours and thus cannot be an ideal triangle. This contradicts
our assumption about N6

!
P i

"
, and the lemma is proved.
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